
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

1 | P a g e
CS120 COMPUTER PROGRAMMING LAB

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAACAccredited)

(Approved by AICTE , Affiliated to APJ Abdul Kalam Technological University, Kerala)

Pampady, Thiruvilwamala(PO), Thrissur(DT), Kerala 680 588

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LAB MANUAL

CS333 APPLICATION SOFTWARE DEVELOPMENT LAB

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through

excellence in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and

Research in Engineering and Frontier Technology and to impart quality education to

mould technically competent citizens with moral integrity, social commitment and ethical

values.

We intend to facilitate our students to assimilate the latest technological know-how and to

imbibe discipline, culture and spiritually, and to mould them in to technological giants,

dedicated research scientists and intellectual leaders of the country who can spread the

beams of light and happiness among the poor and the underprivileged.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

2 | P a g e
CS120 COMPUTER PROGRAMMING LAB

ABOUT THE DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Certified by ISO 9001-2015

 Affiliated to A P J Abdul Kalam Technological University, Kerala.

DEPARTMENT MISSION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering

Professionals to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world

problems with emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science

 and Engineering through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software

 Packages, Web Services, System Tools and Components as per needs and

 specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing

 environment by learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication

 skills, Teamworkand leadership qualities.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

3 | P a g e
CS120 COMPUTER PROGRAMMING LAB

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified

needs with appropriate consideration for the public health and safety, and the

cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge

and research methods including design of experiments, analysis and

interpretation of data, and synthesis of the information to provide valid

conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources,

and modern engineering and IT tools including prediction and modeling to

complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate

the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities

with the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make

effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding

of the engineering and management principles and apply these to one’s own

work, as a member and leader in a team, to manage projects and in

multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability

to engage in independent and life-long learning in the broadest context of

technological change.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

4 | P a g e
CS120 COMPUTER PROGRAMMING LAB

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software

solutions for Real-time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development

of high quality System Software Tools and Efficient Web Design Models with a focus

on performance optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating

hardware/software products in the domains of Big Data Analytics, Web Applications

and Mobile Apps to create innovative career path and for the socially relevant issues.

COURSE OUTCOME

C333.1 Design a database for a given problem using database design principles.

C333.2 Implement database for a given problem.

C333.3 Apply stored programming concepts (PL-SQL) using Cursors and Triggers.

C333.4 Use graphical user interface , Event Handling and Database connectivity to

develop and deploy applications.

C333.5 Use graphical user interface, Event Handling and Database connectivity to

develop and deploy applets.

C333.6 Develop medium-sized project in a team.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C333.1 3 3

C333.2 3

C333.3 3 3 3 2

C333.4 3 3 3

C333.5 3 3 3

C333.6 3 3 3

C333 - 3 3 3 2 - - - 3 - - -

MAPPING OF COURSE OUTCOMES WITH PROGRAM SPECIFIC OUTCOMES

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

5 | P a g e
CS120 COMPUTER PROGRAMMING LAB

CO’S PSO1 PSO2 PSO3

C333.1 3

C333.2 3

C333.3 3

C333.4 3

C333.5 3

C333.6 3

C333 3 3 3

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

PREPARATION FOR THE LABORATORY SESSION

GENERAL INSTRUCTIONS TO STUDENTS

1. Read carefully and understand the description of the experiment in

the lab manual. You may go to the lab at an earlier date to look at

the experimental facility and understand it better. Consult the

appropriate references to be completely familiar with the concepts

and hardware.

2. Make sure that your observation for previous week experiment is

evaluated by the faculty member and you have transferred all the

contents to your record before entering to the lab/workshop.

3. At the beginning of the class, if the faculty or the instructor finds

that a student is not adequately prepared, they will be marked as

absent and not be allowed to perform the experiment.

4. Bring necessary material needed (writing materials, graphs,

calculators, etc.) to perform the required preliminary analysis. It is a

good idea to do sample calculations and as much of the analysis as

possible during the session. Faculty help will be available. Errors in

the procedure may thus be easily detected and rectified.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

6 | P a g e
CS120 COMPUTER PROGRAMMING LAB

5. Please actively participate in class and don’t hesitate to ask

questions. Please utilize the teaching assistants fully. To encourage

you to be prepared and to read the lab manual before coming to the

laboratory, unannounced questions may be asked at any time during

the lab.

6. Carelessness in personal conduct or in handling equipment may

result in serious injury to the individual or the equipment. Always be

on the alert for strange sounds

7. Students must follow the proper dress code inside the laboratory.

9. Maintain silence, order and discipline inside the lab. Don’t use

cell phones inside the laboratory.

10. Any injury no matter how small must be reported to the

instructor immediately.

11. Check with faculty members one week before the experiment to

make sure that you have the handout for that experiment and all the

apparatus.

AFTER THE LABORATORY SESSION

1. Clean up your work area.

2. Check with the technician before you leave.

3. Make sure you understand what kind of report is to be prepared

and due submission of record is next lab class.

4. Do sample calculations and some preliminary work to verify that

the experiment was successful

MAKE-UPS AND LATE WORK

 Students must participate in all laboratory exercises as

scheduled. They must obtain permission from the faculty member for

absence, which would be granted only under justifiable

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

7 | P a g e
CS120 COMPUTER PROGRAMMING LAB

circumstances. In such an event, a student must make arrangements

for a make-up laboratory, which will be scheduled when the time is

available after completing one cycle. Late submission will be

awarded less mark for record and internals and zero in worst cases.

LABORATORY POLICIES

1. Food, beverages & mobile phones are not allowed in the

laboratory at any time.

2. Do not sit or place anything on instrument benches.

3. Organizing laboratory experiments requires the help of laboratory

technicians and staff. Be punctual.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

8 | P a g e
CS120 COMPUTER PROGRAMMING LAB

SYLLABUS

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

9 | P a g e
CS120 COMPUTER PROGRAMMING LAB

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

10 | P a g e
CS120 COMPUTER PROGRAMMING LAB

INDEX

EXP

NO

EXPERIMENT NAME PAGE

NO

1 Familiarization of database with DDL and

DML commands

11

2 Creating relationship between the databases.

15

3 Creating a database to set various constraints.

20

4 Creation of Views and Assertions

30

5 Implementation of Build in functions in

RDBMS

33

6 Implementation of various aggregate

functions in SQL

46

7 Implementation of Order By, Group By&

Having clause.

53

8 Implementation of set operators, nested

queries and Join queries

57

9 Implementation of various control structures

using PL/SQL

65

10 Creation of Procedures and Functions

69

11 Creation of Packages

77

12 Creation of database Triggers

and Cursors

83

13 Mini project (Application Development

using Oracle/ MySQL using Database

connectivity)

89

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

11 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 1

Familiarization of Database with DDL

and DML Commands.

Date…………

AIM

To familiarize Database with DDL and DML Commands.

THEORY

Database is a collection of related data and data is a collection of facts and

figures that can be processed to produce information. Mostly data represents

recordable facts. Data aids in producing information, which is based on facts

A database management system stores data in such a way that it becomes

easier to retrieve, manipulate, and produce information. SQL is a standard

language for storing, manipulating and retrieving data in databases. SQL

softwares are MySQL, SQL Server, MS Access, Oracle etc.,

SQL commands can be divided into three subgroups, DDL, DML and DCL.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

12 | P a g e
CS120 COMPUTER PROGRAMMING LAB

1. DDL:

DDL is short name of Data Definition Language, which deals with database

schemas and descriptions, of how the data should reside in the database.

 CREATE – to create database and its objects like (table, index, views, store

procedure, function and triggers)

 ALTER – alters the structure of the existing database

 DROP – delete objects from the database

 TRUNCATE – remove all records from a table, including all spaces

allocated for the records are removed

 COMMENT – add comments to the data dictionary

 RENAME – rename an object

2. DML:

DML is short name of Data Manipulation Language which deals with data

manipulation, and includes most common SQL statements such SELECT,

INSERT, UPDATE, DELETE etc, and it is used to store, modify, retrieve,

delete and update data in database.

 SELECT – retrieve data from the a database

 INSERT – insert data into a table

 UPDATE – updates existing data within a table

 DELETE – Delete all records from a database table

 MERGE – UPSERT operation (insert or update)

 CALL – call a PL/SQL or Java subprogram

 EXPLAIN PLAN – interpretation of the data access path

 LOCK TABLE – concurrency Control

ALGORITHM

Step 1: Start

http://www.w3schools.in/mysql/php-mysql-create/
http://www.w3schools.in/mysql/php-mysql-select/
http://www.w3schools.in/mysql/php-mysql-insert/
http://www.w3schools.in/mysql/php-mysql-update/
http://www.w3schools.in/mysql/php-mysql-delete/

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

13 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Step 2: Create a database using DDL commands.

Step 3: Create a table with required attributes.

Step 4: Insert values into the Table using DML commands.

Step 5: Retrieve any rows using SELECT with restrictions.

Step 6: Update, Alter and Delete any rows.

Step 7: Stop

QUERIES

1. Create Database

mysql>create database employee;

2. Create Table:

mysql>create table customers (empid int(10) primary key, fname

varchar(20),age int(10),address varchar(20),salary int(10));

3. Insert:

mysql>Insert into employee values(1,’anu’,23,’palakkad’,20000);

4. Select Commands:

mysql>Select * from employees;

mysql>Select distinct fname from employees;

mysql>Select empid, fname, age from employees;

mysql>Select fname from employees where empid=01;

mysql>Select fname, lname from employees where salary=’30000’;

mysql>Select fname from employees where start_date=’11-05-05’;

mysql>Select fname, lname from employees where salary>30000;

mysql>Select fname, lname from employees where salary<30000;

mysql>Select fname, lname from employees where salary>=30000;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

14 | P a g e
CS120 COMPUTER PROGRAMMING LAB

mysql>Select fname, lname from employees where salary<=30000;

mysql>Select fname, lname from employees where salary<>30000;

mysql>Select lname from employees where salary between 25000 and 35000;

mysql>Select fname from employees where salary in (20000, 30000, 35000);

mysql>Select fname from employees where fname like ‘a%’;

5. Update:

mysql>update employee set lname=’lalu’ where eno=1;

6. Alter:

mysql>Alter employee add addr varchar(20);

7. Drop:

mysql>Drop table employee;

EXPECTED OUTCOME

Thus the data DDL and DML commands were performed and implemented

successfully.

VIVA QUESTIONS

1. What are the categories of SQL command?

2. What is the difference between Drop, Delete and Truncate statements

in SQL Server?

3. Explain DCL and TCL commands?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

15 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 2

Creating relationship between the

databases.

Date…………

AIM

To create Databases and implement relationship between databases.

THEORY

A join is an SQL operation performed to establish a connection between two

or more database tables based on matching columns, thereby creating a

relationship between the tables. Most complex queries in an SQL database

management system involve join commands. Types of Joins:

1. INNER JOIN OR EQUIJOIN:

The most important and frequently used of the joins is the INNER JOIN.

They are also referred to as an EQUIJOIN.

The INNER JOIN creates a new result table by combining column values of

two tables (table1 and table2) based upon the join-predicate. The query

compares each row of table1 with each row of table2 to find all pairs of rows

which satisfy the join-predicate. When the join-predicate is satisfied, column

values for each matched pair of rows of A and B are combined into a result

row.

Syntax:

The basic syntax of the INNER JOIN is as follows.

SELECT table1.column1, table2.column2...

FROM table1

INNER JOIN table2

ON table1.common_field = table2.common_field;

2. LEFT JOIN:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

16 | P a g e
CS120 COMPUTER PROGRAMMING LAB

The SQL LEFT JOIN returns all rows from the left table, even if there are

no matches in the right table. This means that if the ON clause matches 0

(zero) records in the right table; the join will still return a row in the result,

but with NULL in each column from the right table.

This means that a left join returns all the values from the left table, plus

matched values from the right table or NULL in case of no matching join

predicate.

Syntax:

The basic syntax of a LEFT JOIN is as follows.

SELECT table1.column1, table2.column2...

FROM table1

LEFT JOIN table2

ON table1.common_field = table2.common_field;

3. RIGHT JOIN:

The SQL RIGHT JOIN returns all rows from the right table, even if there

are no matches in the left table. This means that if the ON clause matches 0

(zero) records in the left table; the join will still return a row in the result, but

with NULL in each column from the left table.

This means that a right join returns all the values from the right table, plus

matched values from the left table or NULL in case of no matching join

predicate.

Syntax:

The basic syntax of a RIGHT JOIN is as follow.

SELECT table1.column1, table2.column2...

FROM table1

RIGHT JOIN table2

ON table1.common_field = table2.common_field;

4. FULL JOIN:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

17 | P a g e
CS120 COMPUTER PROGRAMMING LAB

The SQL FULL JOIN combines the results of both left and right outer joins.

The joined table will contain all records from both the tables and fill in

NULLs for missing matches on either side.

Syntax:

The basic syntax of a FULL JOIN is as follows −

SELECT table1.column1, table2.column2...

FROM table1

FULL JOIN table2

ON table1.common_field = table2.common_field;

5. SELF JOIN:

The SQL SELF JOIN is used to join a table to itself as if the table were two

tables; temporarily renaming at least one table in the SQL statement.

Syntax:

The basic syntax of SELF JOIN is as follows −

SELECT a.column_name, b.column_name...

FROM table1 a, table1 b

WHERE a.common_field = b.common_field;

6. CARTESIAN JOIN OR CROSS JOIN:

The CARTESIAN JOIN or CROSS JOIN returns the Cartesian product of

the sets of records from two or more joined tables. Thus, it equates to an

inner join where the join-condition always evaluates to either True or where

the join-condition is absent from the statement.

Syntax:

The basic syntax of the CARTESIAN JOIN or the CROSS JOIN is as

follows −

SELECT table1.column1, table2.column2...

FROM table1, table2 [, table3]

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

18 | P a g e
CS120 COMPUTER PROGRAMMING LAB

ALGORITHM

STEP 1: Start the program.

STEP 2: Create two different tables with its essential attributes.

STEP 3: Insert attribute values into the table.

STEP 4: Create the table object for easy reference.

STEP 5: Join two tables by using JOIN operator.

STEP 6: Display the result of the result table.

STEP 7: Stop the program.

QUERIES

mysql> create table customers (id int(10) primary key,name

varchar(20),age int(10),address varchar(20),salary int(10));

mysql> insert into customers values(1,'anu',25,'pkd',25000);

mysql> insert into customers values(2,'sanu',25,'pkd',25500);

mysql> insert into customers values(3,'vinu',25,'pkd',25500);

mysql> select * from customers;

mysql> create table orders(oid int(10),date date,custid int(10),amount

int(10));

mysql> insert into orders values(100,'2015-11-2',2,300);

mysql> insert into orders values(200,'2015-10-5',1,500);

mysql> insert into orders values(200,'2015-6-5',4,600);

mysql> select * from orders;

1. Inner Join:

mysql> select id,name,Date,amount from customers inner join orders on

customers.id=orders.custid;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

19 | P a g e
CS120 COMPUTER PROGRAMMING LAB

2. Left Join:
mysql> select id,name,amount,date from customers left join orders on

customers.id=orders.custid;

3.Right Join:

mysql> select id,name,amount,date from customers right join orders on

customers.id=orders.custid;

4.Cartesian Join:

mysql> select id,name,amount,date from customers,orders;

5.Self Join:

mysql> select a.id,b.name,a.salary from customers a,customers b where

a.salary<b.salary;

6.Full Join:

mysql> select id,name,date,amount from customers full join orders on

orders.custid;

EXPECTED OUTCOME

Students are able to know the relationship of databases and important of joins.

VIVA QUESTIONS

1. What is the use of join in SQL?

2. What is a cross join?

3. What is the difference between inner join and left join?

4. What is self join in sql?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

20 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 3

Creating a database to set various

constraints

Date…………

AIM

To create a database and set various constraints.

THEORY

Constraints are the rules enforced on the data columns of a table. These are

used to limit the type of data that can go into a table. This ensures the

accuracy and reliability of the data in the database. Constraints could be either

on a column level or a table level. The column level constraints are applied

only to one column, whereas the table level constraints are applied to the

whole table.

 NOT NULL Constraint: Ensures that a column cannot have a NULL

value.

 DEFAULT Constraint: Provides a default value for a column when

none is specified.

 UNIQUE Constraint: Ensures that all values in a column are different.

 PRIMARY Key: Uniquely identifies each row/record in a database

table.

 FOREIGN Key: Uniquely identifies row/record in any of the given

database tables.

 CHECK Constraint: The CHECK constraint ensures that all the

values in a column

 satisfies certain conditions.

 INDEX: Used to create and retrieve data from the database very

quickly.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

21 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Constraints can be specified when a table is created with the CREATE

TABLE statement or you can use the ALTER TABLE statement to create

constraints even after the table is created.

1. NOT NULL Constraint

By default, a column can hold NULL values. If you do not want a column to

have a NULL value, then you need to define such a constraint on this column

specifying that NULL is now not allowed for that column. A NULL is not the

same as no data, rather, it represents unknown data.

2.DEFAULT Constraint

The DEFAULT constraint provides a default value to a column when the

INSERT INTO statement does not provide a specific value.

3.UNIQUE Constraint

The UNIQUE Constraint prevents two records from having identical values in

a column. In the CUSTOMERS table, for example, you might want to prevent

two or more people from having an identical age.

4.Primary Key

A primary key is a field in a table which uniquely identifies each row/record

in a database table. Primary keys must contain unique values. A primary key

column cannot have NULL values. A table can have only one primary key,

which may consist of single or multiple fields. When multiple fields are used

as a primary key, they are called a composite key. If a table has a primary

key defined on any field(s), then you cannot have two records having the

same value of that field(s).

5.Foreign Key

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

22 | P a g e
CS120 COMPUTER PROGRAMMING LAB

A foreign key is a key used to link two tables together. This is sometimes also

called as a referencing key. A Foreign Key is a column or a combination of

columns whose values match a Primary Key in a different table.

The relationship between 2 tables matches the Primary Key in one of the

tables with a Foreign Key in the second table.

If a table has a primary key defined on any field(s), then you cannot have two

records having the same value of that field(s).

6.CHECK Constraint

The CHECK Constraint enables a condition to check the value being entered

into a record. If the condition evaluates to false, the record violates the

constraint and isn't entered the table.

7.INDEX Constraint

The INDEX is used to create and retrieve data from the database very

quickly. An Index can be created by using a single or a group of columns in a

table. When the index is created, it is assigned a ROWID for each row before

it sorts out the data. Proper indexes are good for performance in large

databases, but you need to be careful while creating an index. A selection of

fields depends on what you are using in your SQL queries.

ALGORITHM

Step 1: Start

Step 2: Create a database.

Step 3: While creating the table, specify constraints along with the specific

attribute.

Step 4: Insert some values to the table to check the working of constraints.

Step 5: Stop.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

23 | P a g e
CS120 COMPUTER PROGRAMMING LAB

QUERIES

1. NOT NULL:

The following SQL query creates a new table called CUSTOMERS and adds

five columns, three of which, are ID NAME and AGE, In this we specify not

to accept NULLs.

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,

ADDRESS CHAR (25) ,

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

If CUSTOMERS table has already been created, then to add a NOT NULL

constraint to the SALARY column in Oracle and MySQL, we use the ALTER

command.

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18, 2) NOT NULL;

2. DEFAULT:

For example, the following SQL creates a new table called CUSTOMERS

and adds five columns. Here, the SALARY column is set to 5000.00 by

default, so in case the INSERT INTO statement does not provide a value for

this column, then by default this column would be set to 5000.00.

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

24 | P a g e
CS120 COMPUTER PROGRAMMING LAB

AGE INT NOT NULL,

ADDRESS CHAR (25) ,

SALARY DECIMAL (18, 2) DEFAULT 5000.00,

PRIMARY KEY (ID)

)

If the CUSTOMERS table has already been created, then to add a DEFAULT

constraint to the SALARY column, we use the below syntax.

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18, 2) DEFAULT 5000.00;

To drop a DEFAULT constraint, use the following SQL query

ALTER TABLE CUSTOMERS

ALTER COLUMN SALARY DROP DEFAULT;

3. UNIQUE:

For example, the following SQL query creates a new table called

CUSTOMERS and adds five columns. Here, the AGE column is set to

UNIQUE, so that you cannot have two records with the same age.

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL UNIQUE,

ADDRESS CHAR (25),

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

If the CUSTOMERS table has already been created, then to add a UNIQUE

constraint to the AGE column, then we use the below code.

ALTER TABLE CUSTOMERS

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

25 | P a g e
CS120 COMPUTER PROGRAMMING LAB

MODIFY AGE INT NOT NULL UNIQUE;

You can also use the following syntax, which supports naming the constraint

in multiple columns as well.

ALTER TABLE CUSTOMERS

ADD CONSTRAINT myUniqueConstraint UNIQUE(AGE,SALARY);

To drop a UNIQUE constraint, use the following SQL query.

ALTER TABLE CUSTOMERS

DROP INDEX myUniqueConstraint;

4. Primary Key

Here is the syntax to define the ID attribute as a primary key in a

CUSTOMERS table.

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,

ADDRESS CHAR (25) ,

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

To create a PRIMARY KEY constraint on the "ID" column when the

CUSTOMERS table already exists, use the following SQL syntax −

ALTER TABLE CUSTOMER ADD PRIMARY KEY (ID);

For defining a PRIMARY KEY constraint on multiple columns, use the SQL

syntax given below.

 CREATE TABLE CUSTOMERS(

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

26 | P a g e
CS120 COMPUTER PROGRAMMING LAB

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25) ,

 SALARY DECIMAL (18, 2),

 PRIMARY KEY (ID, NAME)

);

To create a PRIMARY KEY constraint on the "ID" and "NAMES" columns

when CUSTOMERS table already exists, use the following SQL syntax.

ALTER TABLE CUSTOMERS

 ADD CONSTRAINT PK_CUSTID PRIMARY KEY (ID, NAME);

You can clear the primary key constraints from the table with the syntax

given below.

ALTER TABLE CUSTOMERS DROP PRIMARY KEY;

5. Foreign Key

Consider the structure of the following two tables.

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,

ADDRESS CHAR (25) ,

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

CREATE TABLE ORDERS (

ID INT NOT NULL,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

27 | P a g e
CS120 COMPUTER PROGRAMMING LAB

DATE DATETIME,

CUSTOMER_ID INT references CUSTOMERS(ID),

AMOUNT double,

PRIMARY KEY (ID)

);

If the ORDERS table has already been created and the foreign key has not yet

been set, the use the syntax for specifying a foreign key by altering a table.

ALTER TABLE ORDERS

ADD FOREIGN KEY (Customer_ID) REFERENCES CUSTOMERS (ID);

To drop a FOREIGN KEY constraint, use the following SQL syntax.

ALTER TABLE ORDERS

DROP FOREIGN KEY;

6. CHECK

For example, the following program creates a new table called CUSTOMERS

and adds five columns. Here, we add a CHECK with AGE column, so that

you cannot have any CUSTOMER who is below 18 years.

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL CHECK (AGE >= 18),

ADDRESS CHAR (25) ,

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

28 | P a g e
CS120 COMPUTER PROGRAMMING LAB

If the CUSTOMERS table has already been created, then to add a CHECK

constraint to AGE column, you would write a statement like the one given

below.

ALTER TABLE CUSTOMERS

MODIFY AGE INT NOT NULL CHECK (AGE >= 18);

You can also use the following syntax, which supports naming the constraint

in multiple columns as well −

ALTER TABLE CUSTOMERS

ADD CONSTRAINT myCheckConstraint CHECK(AGE >= 18);

To drop a CHECK constraint, use the following SQL syntax. This syntax

does not work with MySQL.

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myCheckConstraint;

7. INDEX Constraint

For example, the following SQL syntax creates a new table called

CUSTOMERS and adds five columns in it.

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,

ADDRESS CHAR (25) ,

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

29 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Now, you can create an index on a single or multiple columns using the

syntax given below.

CREATE INDEX index_name

ON table_name (column1, column2.....);

To create an INDEX on the AGE column, to optimize the search on

customers for a specific age, you can use the follow SQL syntax which is

given below −

CREATE INDEX idx_age

ON CUSTOMERS (AGE);

To drop an INDEX constraint, use the following SQL syntax.

ALTER TABLE CUSTOMERS

DROP INDEX idx_age;

EXPECTED OUTCOME

Students are able to understand the concept of constraints in detail.

VIVA QUESTIONS

1. What is the purpose of foreign key constraint?

2. How many types of constraints are present in SQL Server?

3. Can a column with Primary Key have Null value?

4. Which key accepts multiple NULL values?

5. Can column with Unique key have duplicate values?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

30 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 4
Creation of views and assertions

Date…………

AIM

To create a view and assertions.

THEORY

A view is nothing more than a SQL statement that is stored in the database

with an associated name. A view is actually a composition of a table in the

form of a predefined SQL query.

A view can contain all rows of a table or select rows from a table. A view can

be created from one or many tables which depends on the written SQL query

to create a view.

Views, which are a type of virtual tables allow users to do the following:

 Structure data in a way that users or classes of users find natural or

intuitive.

 Restrict access to the data in such a way that a user can see and

(sometimes) modify exactly what they need and no more.

 Summarize data from various tables which can be used to generate

reports.

Creating Views:

Database views are created using the CREATE VIEW statement. Views can

be created from a single table, multiple tables or another view. To create a

view, a user must have the appropriate system privilege according to the

specific implementation.

The basic CREATE VIEW syntax is as follows:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

31 | P a g e
CS120 COMPUTER PROGRAMMING LAB

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE [condition];

You can include multiple tables in your SELECT statement in a similar way

as you use them in a normal SQL SELECT query.

ALGORITHM

Step 1: Start.

Step 2: Create a database and tables with necessary attributes.

Step 3: Create a view with any attributes of above table.

Step 4: Insert values into the view.

Step 5: Retrieve values from the view using select operations.

Step 6: Stop.

QUERIES

Following is an example to create a view from the CUSTOMERS table. This

view would be used to have customer name and age from the CUSTOMERS

table.

CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age

FROM CUSTOMERS;

Now, you can query CUSTOMERS_VIEW in a similar way as you query an

actual table.

Following is an example for the same.

SELECT * FROM CUSTOMERS_VIEW;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

32 | P a g e
CS120 COMPUTER PROGRAMMING LAB

The following code block has an example to update the age of Ramesh.

UPDATE CUSTOMERS_VIEW

SET AGE = 35

WHERE name='Ramesh';

Rows of data can be deleted from a view. Following is an example to delete a

record having AGE = 22. Obviously, where you have a view, you need a way

to drop the view if it is no longer needed. The syntax is very simple and is

given below:

DELETE FROM CUSTOMERS_VIEW

WHERE age = 22;

Following is an example to drop the CUSTOMERS_VIEW from the

CUSTOMERS table.

DROP VIEW view_name;

Expected Outcome

Students are able to understand the concept of views and its operations.

VIVA QUESTIONS

1. What is the purpose of views in SQL?

2. Are views stored in Databases?

3. What is the alternate name of views?

4. SQL Server has mainly how many types of views?

5. What is the syntax for creating a view?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

33 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 5
Implementation of build in functions

in RDBMS

Date…………

AIM

To implement various build in functions in RDBMS.

THEORY

1. String Functions.

2. Numeric Functions

3. Date Functions.

4. Conversion Functions.

5. Conditional Functions

6. Group Functions

ALGORITHM

Step1: start

Step 2: Create database and tables with necessary attributes.

Step 3: Using dual table we can calculate string and numeric functions.

Step 4: Do all functions for practice.

Step 5: Stop.

QUERIES WITH EXPLANATION:

STRING FUNCTIONS

1. ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns

0 if str is the empty string. Returns NULL if str is NULL. ASCII() works for

characters with numeric values from 0 to 255.

SQL> SELECT ASCII('2');

SQL> SELECT ASCII('dx');

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

34 | P a g e
CS120 COMPUTER PROGRAMMING LAB

2. BIT_LENGTH(str)

Returns the length of the string str in bits.

SQL> SELECT BIT_LENGTH('text');

3. CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string

consisting of the characters given by the code values of those integers. NULL

values are skipped.

SQL> SELECT CHAR(77,121,83,81,'76');

4. CHAR_LENGTH(str)

Returns the length of the string str measured in characters. A multi-byte

character counts as a single character. This means that for a string containing

five two-byte characters, LENGTH() returns 10, whereas CHAR_LENGTH()

returns 5.

SQL> SELECT CHAR_LENGTH("text");

5. CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have

one or more arguments. If all arguments are non-binary strings, the result is a

non-binary string. If the arguments include any binary strings, the result is a

binary string. A numeric argument is converted to its equivalent binary string

form; if you want to avoid that, you can use an explicit type cast, as in this

example −

SQL> SELECT CONCAT('My', 'S', 'QL');

6. CONCAT_WS(separator,str1,str2,...)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

35 | P a g e
CS120 COMPUTER PROGRAMMING LAB

CONCAT_WS() stands for Concatenate With Separator and is a special form

of CONCAT(). The first argument is the separator for the rest of the

arguments. The separator is added between the strings to be concatenated.

The separator can be a string, as can the rest of the arguments. If the separator

is NULL, the result is NULL.

SQL> SELECT CONCAT_WS(',','First name','Last Name');

7. FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist

consisting of N substrings.

SQL> SELECT FIND_IN_SET('b','a,b,c,d');

8. HEX(N_or_S)

If N_or_S is a number, returns a string representation of the hexadecimal

value of N, where N is a longlong (BIGINT) number. This is equivalent to

CONV(N,10,16).

If N_or_S is a string, returns a hexadecimal string representation of N_or_S

where each character in N_or_S is converted to two hexadecimal digits.

SQL> SELECT HEX(255);

SQL> SELECT 0x616263;

9. INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len

characters long replaced by the string newstr. Returns the original string if pos

is not within the length of the string. Replaces the rest of the string from

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

36 | P a g e
CS120 COMPUTER PROGRAMMING LAB

position pos if len is not within the length of the rest of the string. Returns

NULL if any argument is NULL.

SQL> SELECT INSERT('Quadratic', 3, 4, 'What');

10. INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str.

This is the same as the two-argument form of LOCATE(), except that the

order of the arguments is reversed.

SQL> SELECT INSTR('foobarbar', 'bar');

11. LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any

argument is NULL.

SQL> SELECT LEFT('foobarbar', 5);

12. LENGTH(str)

Returns the length of the string str, measured in bytes. A multi-byte character

counts as multiple bytes. This means that for a string containing five two-byte

characters, LENGTH() returns 10, whereas CHAR_LENGTH() returns 5.

SQL> SELECT LENGTH('text');

13. LOWER(str)

Returns the string str with all characters changed to lowercase according to

the current character set mapping.

SQL> SELECT LOWER('QUADRATICALLY');

14. UPPER(str)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

37 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Returns the string str with all characters changed to uppercase according to

the current character set mapping.

SQL> SELECT UPPER('Allah-hus-samad');

15. STRCMP(str1, str2)

Compares two strings and returns 0 if both strings are equal, it returns -1 if

the first argument is smaller than the second according to the current sort

order otherwise it returns 1.

SQL> SELECT STRCMP('MOHD', 'MOHD');

NUMERIC FUNCTIONS

1. ABS(X)

The ABS() function returns the absolute value of X. Consider the following

example −

SQL> SELECT ABS(2);

2. GREATEST(n1,n2,n3,..........)

The GREATEST() function returns the greatest value in the set of input

parameters (n1, n2, n3, a nd so on). The following example uses the

GREATEST() function to return the largest number from a set of numeric

values −

SQL>SELECT GREATEST(3,5,1,8,33,99,34,55,67,43);

3. LEAST(N1,N2,N3,N4,......)

The LEAST() function is the opposite of the GREATEST() function. Its

purpose is to return the least-valued item from the value list (N1, N2, N3, and

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

38 | P a g e
CS120 COMPUTER PROGRAMMING LAB

so on). The following example shows the proper usage and output for the

LEAST() function −

SQL>SELECT LEAST(3,5,1,8,33,99,34,55,67,43);

4. MOD(N,M)

This function returns the remainder of N divided by M. Consider the

following example −

SQL>SELECT MOD(29,3);

5. PI()

This function simply returns the value of pi. SQL internally stores the full

double-precision value of pi.

SQL>SELECT PI();

6. POWER(X,Y)

These two functions return the value of X raised to the power of Y.

SQL> SELECT POWER(3,3);

7. ROUND(X), ROUND(X,D)

This function returns X rounded to the nearest integer. If a second argument,

D, is supplied, then the function returns X rounded to D decimal places. D

must be positive or all digits to the right of the decimal point will be removed.

Consider the following example −

SQL>SELECT ROUND(5.693893);

SQL>SELECT ROUND(5.693893,2);

8. SQRT(X)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

39 | P a g e
CS120 COMPUTER PROGRAMMING LAB

This function returns the non-negative square root of X. Consider the

following example −

SQL>SELECT SQRT(49);

9. TRUNCATE(X,D)

This function is used to return the value of X truncated to D number of

decimal places. If D is 0, then the decimal point is removed. If D is negative,

then D number of values in the integer part of the value is truncated. Consider

the following example −

SQL>SELECT TRUNCATE(7.536432,2);

DATE FUNCTIONS

1. ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument,

ADDDATE() is a synonym for DATE_ADD(). The related function

SUBDATE() is a synonym for DATE_SUB(). For information on the

INTERVAL unit argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_ADD('1998-01-02', INTERVAL 31 DAY);

mysql> SELECT ADDDATE('1998-01-02', INTERVAL 31 DAY);

mysql> SELECT ADDDATE('1998-01-02', 31);

2. ADDTIME(expr1,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. The expr1 is a time

or datetime expression, while the expr2 is a time expression.

mysql> SELECT ADDTIME('1997-12-31 23:59:59.999999','1

1:1:1.000002');

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

40 | P a g e
CS120 COMPUTER PROGRAMMING LAB

3. CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD

format, depending on whether the function is used in a string or in a numeric

context.

mysql> SELECT CURDATE();

4. CURTIME()

Returns the current time as a value in 'HH:MM:SS' or HHMMSS format,

depending on whether the function is used in a string or in a numeric context.

The value is expressed in the current time zone.

mysql> SELECT CURTIME();

5. DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 . expr2 expressed as a value in days from one

date to the other. Both expr1 and expr2 are date or date-and-time expressions.

Only the date parts of the values are used in the calculation.

mysql> SELECT DATEDIFF('1997-12-31 23:59:59','1997-12-30');

6. DAYNAME(date)

Returns the name of the weekday for date.

mysql> SELECT DAYNAME('1998-02-05');

7. DAYOFMONTH(date)

Returns the day of the month for date, in the range 0 to 31.

mysql> SELECT DAYOFMONTH('1998-02-03');

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

41 | P a g e
CS120 COMPUTER PROGRAMMING LAB

8. DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, ., 7 =

Saturday). These index values correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK('1998-02-03');

9. DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysql> SELECT DAYOFYEAR('1998-02-03');

10. HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-

day values. However, the range of TIME values actually is much larger, so

HOUR can return values greater than 23.

mysql> SELECT HOUR('10:05:03');

11. LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last

day of the month. Returns NULL if the argument is invalid.

mysql> SELECT LAST_DAY('2003-02-05');

12. MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. The dayofyear value must

be greater than 0 or the result will be NULL.

mysql> SELECT MAKEDATE(2001,31), MAKEDATE(2001,32);

13. MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute and second arguments.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

42 | P a g e
CS120 COMPUTER PROGRAMMING LAB

mysql> SELECT MAKETIME(12,15,30);

14. MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE('98-02-03 10:05:03');

15. MONTH(date)

Returns the month for date, in the range 0 to 12.

mysql> SELECT MONTH('1998-02-03')

16. MONTHNAME(date)

Returns the full name of the month for a date.

mysql> SELECT MONTHNAME('1998-02-05');

17. NOW()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS'

or

YYYYMMDDHHMMSS format, depending on whether the function is used

in a string or numeric context. This value is expressed in the current time

zone.

mysql> SELECT NOW();

18. SYSDATE()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS'

or

YYYYMMDDHHMMSS format, depending on whether the function is used

in a string or in a numeric context.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

43 | P a g e
CS120 COMPUTER PROGRAMMING LAB

mysql> SELECT SYSDATE();

CONVERSION FUNCTIONS:

1. TO_CHAR function

TO_CHAR function is used to typecast a numeric or date input to character

type with a format model (optional).

Syntax

TO_CHAR(number1, [format], [nls_parameter])

SELECT first_name,

 TO_CHAR (hire_date, 'MONTH DD, YYYY') HIRE_DATE,

 TO_CHAR (salary, '$99999.99') Salary

FROM employees

WHERE rownum < 5;

2. TO_NUMBER function

The TO_NUMBER function converts a character value to a numeric datatype.

If the string being converted contains nonnumeric characters, the function

returns an error.

Syntax

TO_NUMBER (string1, [format], [nls_parameter])

SELECT TO_NUMBER('121.23', '9G999D99') FROM DUAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

44 | P a g e
CS120 COMPUTER PROGRAMMING LAB

3. TO_DATE function

The function takes character values as input and returns formatted date

equivalent of the same. The TO_DATE function allows users to enter a date

in any format, and then it converts the entry into the default format.

Syntax:

TO_DATE(string1, [format_mask], [nls_language])

SELECT TO_DATE('January 15, 1989, 11:00 A.M.', 'Month dd, YYYY, HH:MI

A.M.', 'NLS_DATE_LANGUAGE = American') FROM DUAL;

CONDITIONAL FUNCTIONS:

1. CASE expression

CASE expressions works on the same concept as DECODE but differs in

syntax and usage.

SYNTAX:

CASE [expression]

 WHEN condition_1 THEN result_1

 WHEN condition_2 THEN result_2

 ...

 WHEN condition_n THEN result_n

 ELSE result

END

SELECT first_name, CASE WHEN salary < 200 THEN 'GRADE 1'

 WHEN salary > 200 AND salary < 5000 THEN 'GRADE 2'

 ELSE 'GRADE 3'

 END CASE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

45 | P a g e
CS120 COMPUTER PROGRAMMING LAB

FROM employees;

2. The DECODE function

The function is the SQL equivalence of IF..THEN..ELSE conditional

procedural statement. DECODE works with values/columns/expressions of

all data types.

SYNTAX:

DECODE (expression, search, result [, search, result]... [, default])

SELECT DECODE(NULL,NULL,'EQUAL','NOT EQUAL')

FROM DUAL;

SELECT first_name, salary, DECODE (hire_date, sysdate,'NEW

JOINEE','EMPLOYEE')

 FROM employees;

EXPECTED OUTCOME

Students are able to study the various build in functions in SQL.

VIVA QUESTIONS

1. What are the uses of Bulid in functions in SQL?

2. What are the types of build in functions in SQL?

3. Explain the String comparison function?

4. Explain the necessary of DATE function in SQL?

5. What is the build in function for find the square root of a number?

6. What is the build in function for change the string into initial capital format?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

46 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 6
Implementation of various aggregate

functions in SQL

Date…………

AIM

To implement various aggregate functions in SQL.

THEORY

An aggregate function allows you to perform calculation on a set of values to

return a single scalar value. We often use aggregate functions with the

GROUP BY and HAVING clauses of the SELECT statement.

1. COUNT

MySQL COUNT function is the simplest function and very useful in counting

the number of records, which are expected to be returned by a SELECT

statement.

2. MAX

MySQL MAX function is used to find out the record with maximum value

among a record set.

3. MIN

MySQL MIN function is used to find out the record with minimum value

among a record set.

4. AVG

MySQL AVG function is used to find out the average of a field in various

records.

5. SUM

MySQL SUM function is used to find out the sum of a field in various

records.

THEORY

Step 1: Start.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

47 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Step 2: Create database and tables.

Step 3: Use aggregate functions, find the MIN, MAX, AVG, COUNT and

SUM of attributes.

Step 4: Stop.

QUERIES:

1.COUNT

To understand COUNT function, consider an employee_tbl table, which is

having the following records −

mysql> SELECT * FROM employee_tbl;

+------+------+------------+--------------------+

| id | name | work_date | daily_typing_pages |

+------+------+------------+--------------------+

| 1 | John | 2007-01-24 | 250 |

| 2 | Ram | 2007-05-27 | 220 |

| 3 | Jack | 2007-05-06 | 170 |

| 3 | Jack | 2007-04-06 | 100 |

| 4 | Jill | 2007-04-06 | 220 |

| 5 | Zara | 2007-06-06 | 300 |

| 5 | Zara | 2007-02-06 | 350 |

+------+------+------------+--------------------+

Now, suppose based on the above table you want to count total number of

rows in this table, then you can do it as follows −

mysql>SELECT COUNT(*) FROM employee_tbl ;

+----------+

| COUNT(*) |

+----------+

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

48 | P a g e
CS120 COMPUTER PROGRAMMING LAB

| 7 |

+----------+

Similarly, if you want to count the number of records for Zara, then it can be

done as follows −

mysql>SELECT COUNT(*) FROM employee_tbl WHERE name =

"Zara";

+----------+

| COUNT(*) |

+----------+

| 2 |

+----------+

2. MAX

Now, suppose based on the above table you want to fetch maximum value of

daily_typing_pages, then you can do so simply using the following command

−

mysql> SELECT MAX(daily_typing_pages) FROM employee_tbl;

+-------------------------+

| MAX(daily_typing_pages) |

+-------------------------+

| 350 |

+-------------------------+

You can find all the records with maximum value for each name using

GROUP BY clause as follows −

mysql> SELECT id, name, MAX(daily_typing_pages) FROM

employee_tbl GROUP BY name;

+------+------+-------------------------+

| id | name | MAX(daily_typing_pages) |

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

49 | P a g e
CS120 COMPUTER PROGRAMMING LAB

+------+------+-------------------------+

| 3 | Jack | 170 |

| 4 | Jill | 220 |

| 1 | John | 250 |

| 2 | Ram | 220 |

| 5 | Zara | 350 |

+------+------+-------------------------+

You can use MIN Function along with MAX function to find out minimum

value as well. Try out the following example −

mysql> SELECT MIN(daily_typing_pages) least,

MAX(daily_typing_pages) max FROM employee_tbl;

+-------+------+

| least | max |

+-------+------+

| 100 | 350 |

+-------+------+

3. MIN

Now, suppose based on the above table you want to fetch minimum value of

daily_typing_pages, then you can do so simply using the following command

−

mysql> SELECT MIN(daily_typing_pages) FROM employee_tbl;

+-------------------------+

| MIN(daily_typing_pages) |

+-------------------------+

| 100 |

+-------------------------+

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

50 | P a g e
CS120 COMPUTER PROGRAMMING LAB

You can find all the records with minimum value for each name using

GROUP BY clause as follows −

mysql>SELECT id, name, MIN(daily_typing_pages) FROM

employee_tbl GROUP BY name;

+------+------+-------------------------+

| id | name | MIN(daily_typing_pages) |

+------+------+-------------------------+

| 3 | Jack | 100 |

| 4 | Jill | 220 |

| 1 | John | 250 |

| 2 | Ram | 220 |

| 5 | Zara | 300 |

+------+------+-------------------------+

You can use MIN Function along with MAX function to find out minimum

value as well. Try out the following example −

mysql> SELECT MIN(daily_typing_pages) least,

MAX(daily_typing_pages) max FROM employee_tbl;

+-------+------+

| least | max |

+-------+------+

| 100 | 350 |

+-------+------+

4. AVG

Now, suppose based on the above table you want to calculate average of all

the dialy_typing_pages, then you can do so by using the following command

−

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

51 | P a g e
CS120 COMPUTER PROGRAMMING LAB

mysql> SELECT AVG(daily_typing_pages) FROM employee_tbl;

+-------------------------+

| AVG(daily_typing_pages) |

+-------------------------+

| 230.0000 |

+-------------------------+

You can take average of various records set using GROUP BY clause.

Following example will take average all the records related to a single person

and you will have average typed pages by every person.

mysql> SELECT name, AVG(daily_typing_pages) FROM employee_tbl

GROUP BY name;

+------+-------------------------+

| name | AVG(daily_typing_pages) |

+------+-------------------------+

| Jack | 135.0000 |

| Jill | 220.0000 |

| John | 250.0000 |

| Ram | 220.0000 |

| Zara | 325.0000 |

+------+-------------------------+

5. SUM

Now, suppose based on the above table you want to calculate total of all the

dialy_typing_pages, then you can do so by using the following command −

mysql> SELECT SUM(daily_typing_pages) FROM employee_tbl;

+-------------------------+

| SUM(daily_typing_pages) |

+-------------------------+

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

52 | P a g e
CS120 COMPUTER PROGRAMMING LAB

| 1610 |

+-------------------------+

You can take sum of various records set using GROUP BY clause. Following

example will sum up all the records related to a single person and you will

have total typed pages by every person.

mysql> SELECT name, SUM(daily_typing_pages) FROM employee_tbl

GROUP BY name;

+------+-------------------------+

| name | SUM(daily_typing_pages) |

+------+-------------------------+

| Jack | 270 |

| Jill | 220 |

| John | 250 |

| Ram | 220 |

| Zara | 650 |

+------+-------------------------+

EXPECTED OUTCOME

Students are able to understand the concept of aggregate functions.

VIVA QUESTIONS

1. What is the use of aggregate functions?

2. What are the types of aggregate functions?

3. What is the syntax for each aggregate function?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

53 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 7
Implementation of order by, group by&

having clause.

Date…………

AIM

To implement Order By, Group By and Having Clauses.

THEORY

1. ORDER BY

The SQL ORDER BY clause is used to sort the data in ascending or

descending order, based on one or more columns. Some databases sort the

query results in an ascending order by default.

Syntax

The basic syntax of the ORDER BY clause is as follows:

SELECT column-list

FROM table_name

[WHERE condition]

[ORDER BY column1, column2, .. columnN] [ASC | DESC];

You can use more than one column in the ORDER BY clause. Make sure

whatever column you are using to sort that column should be in the column-

list.

2. GROUP BY

The SQL GROUP BY clause is used in collaboration with the SELECT

statement to arrange identical data into groups. This GROUP BY clause

follows the WHERE clause in a SELECT statement and precedes the ORDER

BY clause.

Syntax:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

54 | P a g e
CS120 COMPUTER PROGRAMMING LAB

The basic syntax of a GROUP BY clause is shown in the following code

block. The GROUP BY clause must follow the conditions in the WHERE

clause and must precede the ORDER BY clause if one is used.

SELECT column1, column2

FROM table_name

WHERE [conditions]

GROUP BY column1, column2

ORDER BY column1, column2

3. HAVING CLAUSE

The HAVING Clause enables you to specify conditions that filter which

group results appear in the results. The WHERE clause places conditions on

the selected columns, whereas the HAVING clause places conditions on

groups created by the GROUP BY clause.

Syntax

The following code block shows the position of the HAVING Clause in a

query.

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

The HAVING clause must follow the GROUP BY clause in a query and must

also precede the ORDER BY clause if used. The following code block has the

syntax of the SELECT statement including the HAVING clause:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

55 | P a g e
CS120 COMPUTER PROGRAMMING LAB

SELECT column1, column2

FROM table1, table2

WHERE [conditions]

GROUP BY column1, column2

HAVING [conditions]

ORDER BY column1, column2

ALGORITHM

Step 1: Start

Step 2: Create database and tables with necessary attributes.

Step 3: Using Order By clause, make data’s in ascending or descending order.

Step 4: Using Group By Clause, arrange data’s in any particular group.

Step 5: Using Having Clause, retrieve data’s with some conditions.

Step 6: Stop.

QUERIES

1. ORDER BY

The following code block has an example, which would sort the result in an

ascending order by the NAME and the SALARY.

SQL> SELECT * FROM CUSTOMERS

ORDER BY NAME, SALARY;

The following code block has an example, which would sort the result in the

descending order by NAME.

SQL> SELECT * FROM CUSTOMERS

ORDER BY NAME DESC;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

56 | P a g e
CS120 COMPUTER PROGRAMMING LAB

2. GROUP BY

If you want to know the total amount of the salary on each customer, then the

GROUP BY query would be as follows.

SQL> SELECT NAME, SUM(SALARY) FROM CUSTOMERS

GROUP BY NAME;

3. HAVING CLAUSE

Following is an example, which would display a record for a similar age

count that would be more than or equal to 2.

SQL > SELECT ID, NAME, AGE, ADDRESS, SALARY

FROM CUSTOMERS

GROUP BY age

HAVING COUNT(age) >= 2;

EXPECTED OUTCOME

Students are able to understand the concept of Order By, Group By and

Having Clauses.

VIVA QUESTIONS

1. What is the meaning of “GROUP BY” clause in Mysql?

2. Is “GROUP BY” clause is similar to “ORDER BY” clause? Justify your

answer.

3. Is Null values in GROUP BY fields are omitted?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

57 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 8
Implementation of set operators, nested

queries.

Date…………

AIM

To implement set operators.

THEORY

Set operators are used to join the results of two (or more) SELECT

statements. The SET operators are UNION, UNION ALL, INTERSECT, and

MINUS.

The UNION set operator returns the combined results of the two SELECT

statements. Essentially, it removes duplicates from the results i.e. only one

row will be listed for each duplicated result. To counter this behavior, use the

UNION ALL set operator which retains the duplicates in the final result.

INTERSECT lists only records that are common to both the SELECT queries;

the MINUS set operator removes the second query's results from the output if

they are also found in the first query's results. INTERSECT and MINUS set

operations produce unduplicated results.

1. UNION

When multiple SELECT queries are joined using UNION operator, Oracle

displays the combined result from all the compounded SELECT queries, after

removing all duplicates and in sorted order (ascending by default), without

ignoring the NULL values.

UNION ALL

UNION and UNION ALL are similar in their functioning with a slight

difference. But UNION ALL gives the result set without removing

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

58 | P a g e
CS120 COMPUTER PROGRAMMING LAB

duplication and sorting the data. For example,in above query UNION is

replaced by UNION ALL to see the effect.

Consider the query demonstrated in UNION section. Note the difference in

the output which is generated without sorting and deduplication.

2. INTERSECT

Using INTERSECT operator, Oracle displays the common rows from both

the SELECT statements, with no duplicates and data arranged in sorted order

(ascending by default).

3. MINUS

Minus operator displays the rows which are present in the first query but

absent in the second query, with no duplicates and data arranged in ascending

order by default.

ALGORITHM

Step 1: Start

Step 2: Create database and tables.

Step 3: Using UNION, INTERSECT and MINUS, find the relation between

tables.

Step 4: Stop.

QUERIES

1. UNION

Consider the below five queries joined using UNION operator. The final

combined result set contains value from all the SQLs. Note the duplication

removal and sorting of data.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

59 | P a g e
CS120 COMPUTER PROGRAMMING LAB

SELECT 1 NUM FROM DUAL

UNION

SELECT 5 FROM DUAL

UNION

SELECT 3 FROM DUAL

UNION

SELECT 6 FROM DUAL

UNION

SELECT 3 FROM DUAL;

SELECT employee_id, first_name, salary

FROM employees

WHERE department_id=10

UNION

SELECT employee_id, first_name, salary

FROM employees

WHERE department_id=20

ORDER BY 3;

2. UNION ALL

Consider the below five queries joined using UNION ALL operator. The final

combined result set contains value from all the SQLs. Note the duplication

removal and sorting of data

SELECT 1 NUM FROM DUAL

UNION ALL

SELECT 5 FROM DUAL

UNION ALL

SELECT 3 FROM DUAL

UNION ALL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

60 | P a g e
CS120 COMPUTER PROGRAMMING LAB

SELECT 6 FROM DUAL

UNION ALL

SELECT 3 FROM DUAL;

3. INTERSECT

For example, the below SELECT query retrieves the salary which are

common in department 10 and 20.

SELECT SALARY

FROM employees

WHERE DEPARTMENT_ID = 10

INTRESECT

SELECT SALARY

FROM employees

WHERE DEPARTMENT_ID = 20

4. MINUS

SELECT JOB_ID

FROM employees

WHERE DEPARTMENT_ID = 10

MINUS

SELECT JOB_ID

FROM employees

WHERE DEPARTMENT_ID = 20;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

61 | P a g e
CS120 COMPUTER PROGRAMMING LAB

AIM

To implement nested queries.

THEORY

A Subquery or Inner query or a Nested query is a query within another SQL

query and embedded within the WHERE clause. A subquery is used to return

data that will be used in the main query as a condition to further restrict the

data to be retrieved. Subqueries can be used with the SELECT, INSERT,

UPDATE, and DELETE statements along with the operators like =, <, >, >=,

<=, IN, BETWEEN, etc.

Subqueries are most frequently used with the SELECT statement. The basic

syntax is as follows

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name OPERATOR

 (SELECT column_name [, column_name]

 FROM table1 [, table2]

 [WHERE])

Subqueries with the UPDATE Statement

The subquery can be used in conjunction with the UPDATE statement. Either

single or multiple columns in a table can be updated when using a subquery

with the UPDATE statement. The basic syntax is as follows.

UPDATE table

SET column_name = new_value

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

62 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Subqueries with the DELETE Statement

The subquery can be used in conjunction with the DELETE statement like

with any other statements mentioned above. The basic syntax is as follows.

DELETE FROM TABLE_NAME

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Subqueries with the INSERT Statement

Subqueries also can be used with INSERT statements. The INSERT statement

uses the data returned from the subquery to insert into another table. The

selected data in the subquery can be modified with any of the character, date

or number functions.

INSERT INTO table_name [(column1 [, column2])]

SELECT [*|column1 [, column2]

FROM table1 [, table2]

[WHERE VALUE OPERATOR]

ALGORITHM

Step 1: Start

Step 2: Create database and tables.

Step 3: create subqueries using the syntax and check the insert, update and

delete commands.

Step 4: Stop.

QUERY

Consider the CUSTOMERS table having the following records −

+----+----------+-----+-----------+----------+

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

63 | P a g e
CS120 COMPUTER PROGRAMMING LAB

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Now, let us check the following subquery with a SELECT statement.

SQL> SELECT *

 FROM CUSTOMERS

 WHERE ID IN (SELECT ID

 FROM CUSTOMERS

 WHERE SALARY > 4500) ;

Subqueries with the UPDATE Statement:

Assuming, we have CUSTOMERS_BKP table available which is backup of

CUSTOMERS table. The following example updates SALARY by 0.25 times

in the CUSTOMERS table for all the customers whose AGE is greater than or

equal to 27.

SQL> UPDATE CUSTOMERS

 SET SALARY = SALARY * 0.25

 WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

 WHERE AGE >= 27);

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

64 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Subqueries with the DELETE Statement:

Assuming, we have a CUSTOMERS_BKP table available which is a backup

of the CUSTOMERS table. The following example deletes the records from

the CUSTOMERS table for all the customers whose AGE is greater than or

equal to 27.

SQL> DELETE FROM CUSTOMERS

 WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

 WHERE AGE >= 27);

Subqueries with the INSERT Statement

Consider a table CUSTOMERS_BKP with similar structure as CUSTOMERS

table. Now to copy the complete CUSTOMERS table into the

CUSTOMERS_BKP table, you can use the following syntax.

SQL> INSERT INTO CUSTOMERS_BKP

SELECT * FROM CUSTOMERS

WHERE ID IN (SELECT ID

FROM CUSTOMERS);

EXPECTED OUTCOME

Students are able to understand the concept of nested queries.

VIVA QUESTIONS

1. Explain Nested Queries?

2. What is the syntax of nested query?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

65 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 9
Implementation of various control

structures using PL/SQL

Date…………

Q1 : Write PL/SQL block which will calculate some of two numbers and

display the output?

Q2: Write a PL/SQL block which accepts employee number and increment is

salary by 1000?

Q3: Write a PL/SQL block which empno and delete that row from the emp

table?

Q4: PL/SQL for reversing the given stringQ3: Write a PL/SQL block which

empno and delete that row from the emp table?

Theory
PL/SQL has a variety of control structures that allow you to control the

behaviour of the block as it runs. These structures include conditional

statements and loops.

If-then-

else Case

o Case with no else

o Labeled case

o Searched

case Simple loop

While loop

For loop

Goto and Labels

Conditional control in PL/SQL-

Syntax:

IF <condition> THEN

<Action>

ELSEIF<condition>

<Action>

ELSE

<Action>

ENDIF;

The WHILE LOOP:

Syntax:

WHILE <condition>

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

66 | P a g e
CS120 COMPUTER PROGRAMMING LAB

LOOP

<Action>

END LOOP;

The FOR LOOP statement:

Syntax:

FOR variable IN [REVERSE] start—end

LOOP

<Action>

END LOOP;

The GOTO statement: The goto statement allows you to change the flow of

control

within a PL/SQL Block.

Queries :
Q1 : Write PL/SQL block which will calculate some of two numbers and

display the output?

DECLARE

A number(2);

B number(2);

C number(3);

BEGIN

A := 10;

B := 20;

C := A + B;

DBMS_OUTPUT.PUT_LINE(C);

DBMS_OUTPUT.PUT_LINE(‘sum of two numbers’ || C);

END;

/

Output:

30

sum of two numbers 30

PL/SQL procedure successfully completed.

Q2: Write a PL/SQL block which accepts employee number and increment is

salary by 1000?

DECLARE

A number(4);

A := &Empno;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

67 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Update emp set sal = sal + 1000 where Empno = A;

END;

/

Q3: Write a PL/SQL block which empno and delete that row from the emp

table?

DECLARE

A number(4);

BEGIN

A := &Empno;

Delete from emp where Empno = A;

END;

/

Q4: PL/SQL for reversing the given string

Algorithm:

1. Get the input string.

2. Find the length of the string.

3. Extract the characters one by one from the end of the string.

4. Concatenate the extracted characters.

5. Display the concatenated reversed string.

6. Stop the program.

Program:

declare

b varchar2(10) := '&b';

c varchar2(10);

l number(2);

i number(2);

g number(2);

d varchar2(10);

begin

l:=length(b);

g:=l;

for i in 1..l

loop

c:=substr(b,g,1);

g := g - 1;

d := d ||

c; end loop;

dbms_output.put_line('revised string

is'); dbms_output.put_line(d);

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

68 | P a g e
CS120 COMPUTER PROGRAMMING LAB

end;

OUTPUT:

Enter value for b: ramu

old 2: b varchar2(10) := '&b';

new 2: b varchar2(10) := 'ramu';

revised string is

umar

PL/SQL procedure successfully completed.

Expected Output
studied and implemented of various control structures using PL/SQL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

69 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 10

CREATION OF PROCEDURES AND FUNCTIONS

Date…………

Aim :Creation of Procedures and Functions

Q1 : Create a procedure to insert record

Q2 : Create a function to find factorial

Theory

A subprogram is a program unit/module that performs a particular task.

These subprograms are combined to form larger programs. This is basically

called the 'Modular design'. A subprogram can be invoked by another

subprogram or program which is called the calling program.

A subprogram can be created −

•At the schema level

•Inside a package

•Inside a PL/SQL block

At the schema level, subprogram is a standalone subprogram. It is created

with the CREATE PROCEDURE or the CREATE FUNCTION statement. It

is stored in the database and can be deleted with the DROP PROCEDURE or

DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is

stored in the database and can be deleted only when the package is deleted

with the DROP PACKAGE statement. We will discuss packages in the

chapter 'PL/SQL - Packages'.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a

set of parameters. PL/SQL provides two kinds of subprograms −

•Functions − These subprograms return a single value; mainly used to

compute and return a value.

•Procedures − These subprograms do not return a value directly;

mainly used to perform an action.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

70 | P a g e
CS120 COMPUTER PROGRAMMING LAB

BEGIN

< procedure_body >

END procedure_name;

Where,

•procedure-name specifies the name of the procedure.

•[OR REPLACE] option allows the modification of an existing

procedure.

•The optional parameter list contains name, mode and types of the

parameters. IN represents the value that will be passed from outside

and OUT represents the parameter that will be used to return a value

outside of the procedure.

•procedure-body contains the executable part.

•The AS keyword is used instead of the IS keyword for creating a

standalone procedure.

Example
The following example creates a simple procedure that displays the string

'Hello World!' on the screen when executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

dbms_output.put_line('Hello World!');

END;

/

When the above code is executed using the SQL prompt, it will produce the

following result −

Procedure created.

Executing a Standalone Procedure
A standalone procedure can be called in two ways −

•Using the EXECUTE keyword

•Calling the name of the procedure from a PL/SQL block

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

71 | P a g e
CS120 COMPUTER PROGRAMMING LAB

The above procedure named 'greetings' can be called with the EXECUTE

keyword as −

EXECUTE greetings;

The above call will display −

Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block −

BEGIN

greetings;

END;

/

The above call will display −

Hello World

PL/SQL procedure successfully completed.

Deleting a Standalone Procedure
A standalone procedure is deleted with the DROP PROCEDURE statement.

Syntax for deleting a procedure is −

DROP PROCEDURE procedure-name;

You can drop the greetings procedure by using the following statement −

DROP PROCEDURE greetings;

Parameter Modes in PL/SQL Subprograms

IN & OUT Mode Example 1

This program finds the minimum of two values. Here, the procedure takes

two numbers using the IN mode and returns their minimum using the OUT

parameters.

DECLARE

a number;

b number;

c number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

BEGIN

IF x < y THEN

z:= x;

ELSE

z:= y;

END IF;

END;

BEGIN

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

72 | P a g e
CS120 COMPUTER PROGRAMMING LAB

a:= 23;

b:= 45;

findMin(a, b, c);

dbms_output.put_line(' Minimum of (23, 45) : ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the

following result −

Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

IN & OUT Mode Example 2

This procedure computes the square of value of a passed value. This example

shows how we can use the same parameter to accept a value and then return

another result.

DECLARE

a number;

PROCEDURE squareNum(x IN OUT number) IS

BEGIN

x := x * x;

END;

BEGIN

a:= 23;

squareNum(a);

dbms_output.put_line(' Square of (23): ' || a);

END;

/

When the above code is executed at the SQL prompt, it produces the

following result −

Square of (23): 529

PL/SQL procedure successfully completed.

Methods for Passing Parameters
Actual parameters can be passed in three ways −

•Positional notation

•Named notation

•Mixed notation

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

73 | P a g e
CS120 COMPUTER PROGRAMMING LAB

PROCEDURE TO INSERT NUMBER

SQL> create table emp1(id number(3),First_name varchar2(20));

Table created.

SQL> insert into emp1 values(101,'Nithya');

1 row created.

SQL> insert into emp1 values(102,'Maya');

1 row created.

SQL> select * from emp1;

ID FIRST_NAME

101 Nithya

102 Maya

SQL> set serveroutput on;

SQL> create or replace

2 procedure insert_num(p_num number)is

3 begin

4 insert into emp1(id,First_name) values(p_num,user);

5 end insert_num;

6 /

Procedure created.

SQL> exec insert_num(3);

PL/SQL procedure successfully completed.

SQL> select * from emp1;

ID FIRST_NAME

--------- --------------------

101 Nithya

102 Maya

103 SCOTT

FUNCTION TO FIND FACTORIAL

SQL> create or replace function fact(n number)

2 return number is

3 i number(10);

4 f number:=1;

5 begin

6 for i in 1..N loop

7 f:=f*i;

8 end loop;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

74 | P a g e
CS120 COMPUTER PROGRAMMING LAB

9 return f;

10 end;

11 /

Function created.

SQL> select fact(5) from dual;

FACT(5)

120

Creating a Function

A standalone function is created using the CREATE FUNCTION statement.

The simplified syntax for the CREATE OR REPLACE PROCEDURE

statement is as follows −

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

< function_body >

END [function_name];

Where,

•function-name specifies the name of the function.

•[OR REPLACE] option allows the modification of an existing

function.

•The optional parameter list contains name, mode and types of the

parameters. IN represents the value that will be passed from outside

and OUT represents the parameter that will be used to return a value

outside of the procedure.

•The function must contain a return statement.

•The RETURN clause specifies the data type you are going to return

from the function.

•function-body contains the executable part.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

75 | P a g e
CS120 COMPUTER PROGRAMMING LAB

•The AS keyword is used instead of the IS keyword for creating a

standalone function.

Example

The following example illustrates how to create and call a standalone

function. This function returns the total number of CUSTOMERS in the

customers table.

We will use the CUSTOMERS table, which we had created in the PL/SQL

Variables chapter −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

total number(2) := 0;

BEGIN

SELECT count(*) into total

FROM customers;

RETURN total;

END;

/

When the above code is executed using the SQL prompt, it will produce the

following result −

Function created.

Calling a Function

While creating a function, you give a definition of what the function has to

do. To use a function, you will have to call that function to perform the

defined task. When a program calls a function, the program control is

transferred to the called function.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

76 | P a g e
CS120 COMPUTER PROGRAMMING LAB

A called function performs the defined task and when its return statement is

executed or when the last end statement is reached, it returns the program

control back to the main program.

To call a function, you simply need to pass the required parameters along

with the function name and if the function returns a value, then you can store

the returned value. Following program calls the function totalCustomers

from an anonymous block −

DECLARE

c number(2);

BEGIN

c := totalCustomers();

dbms_output.put_line('Total no. of Customers: ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the

following result −

Total no. of Customers: 6

PL/SQL procedure successfully completed.

Expected Output
Created procedures and functions specified above.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

77 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 11

CREATION OF PACKAGES

Date…………

Aim :

Creation of Packages

Theory

The package might include a set of procedures that forms an API, or a pool of

type definitions and variable declarations. The package is compiled and stored

in the database, where its contents can be shared by many applications.

A package is a schema object that groups logically related PL/SQL types,

variables, and subprograms. Packages usually have two parts, a specification

(spec) and a body; sometimes the body is unnecessary. The specification is

the interface to the package. It declares the types, variables, constants,

exceptions, cursors, and subprograms that can be referenced from outside the

package. The body defines the queries for the cursors and the code for the

subprograms.

To create package specs, use the SQL statement CREATE PACKAGE. A

CREATE PACKAGE BODY statement defines the package body.

The body holds implementation details and private declarations, which are

hidden from code outside the package.

Following the declarative part of the package body is the optional

initialization part, which holds statements that initialize package variables and

do any other one-time setup steps.

The AUTHID clause determines whether all the packaged subprograms

execute with the privileges of their definer (the default) or invoker, and

whether their unqualified references to schema objects are resolved in the

schema of the definer or invoker.

A call spec lets you map a package subprogram to a Java method or external

C function. The call spec maps the Java or C name, parameter types, and

return type to their SQL counterparts.

The following is contained in a PL/SQL package:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

78 | P a g e
CS120 COMPUTER PROGRAMMING LAB

•Get and Set methods for the package variables, if you want to avoid letting

other procedures read and write them directly.

•Cursor declarations with the text of SQL queries. Reusing exactly the same

query text in multiple locations is faster than retyping the same query each

time with slight differences. It is also easier to maintain if you need to change

a query that is used in many places.

•Declarations for exceptions. Typically, you need to be able to reference these

from different procedures, so that you can handle exceptions within called

subprograms.

•Declarations for procedures and functions that call each other. You do not

need to worry about compilation order for packaged procedures and

functions, making them more convenient than standalone stored procedures

and functions when they call back and forth to each other.

•Declarations for overloaded procedures and functions. You can create

multiple variations of a procedure or function, using the same names but

different sets of parameters.

•Variables that you want to remain available between procedure calls in the

same session. You can treat variables in a package like global variables.

•Type declarations for PL/SQL collection types. To pass a collection as a

parameter between stored procedures or functions, you must declare the type

in a package so that both the calling and called subprogram can refer to it.

The spec lists the package resources available to applications. All the

information your application needs to use the resources is in the spec. For

example, the following declaration shows that the function named factorial

takes one argument of type INTEGER and returns a value of type INTEGER:

FUNCTION factorial (n INTEGER) RETURN INTEGER; -- returns n!

That is all the information you need to call the function. You need not

consider its underlying implementation (whether it is iterative or recursive for

example).

If a spec declares only types, constants, variables, exceptions, and call specs,

the package body is unnecessary. Only subprograms and cursors have an

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

79 | P a g e
CS120 COMPUTER PROGRAMMING LAB

underlying implementation. In Example, the package needs no body because

it declares types, exceptions, and variables, but no subprograms or cursors.

Such packages let you define global variables, usable by stored procedures

and functions and triggers, that persist throughout a session.

CREATE PACKAGE trans_data AS -- bodiless package TYPE TimeRec IS

RECORD (minutes SMALLINT, hours SMALLINT); TYPE TransRec IS

RECORD (category VARCHAR2(10), account INT, amount REAL, time_of

TimeRec); minimum_balance CONSTANT REAL := 10.00;

number_processed INT; insufficient_funds EXCEPTION; END trans_data; /

Referencing Package Contents

To reference the types, items, subprograms, and call specs declared within a

package spec, use dot notation:

package_name.type_name

package_name.item_name

package_name.subprogram_name

You can reference package contents from database triggers, stored

subprograms, 3GL application programs, and various Oracle tools. For

example, you can call package procedures as shown in Example 9-3.

The following example calls the hire_employee procedure from an

anonymous block in a Pro*C program. The actual parameters emp_id,

emp_lname, and emp_fname are host variables.

EXEC SQL EXECUTE

BEGIN

emp_actions.hire_employee(:emp_id,:emp_lname,:emp_fname, ...);

Restrictions
You cannot reference remote packaged variables, either directly or indirectly.

For example, you cannot call the a procedure through a database link if the

procedure refers to a packaged variable.

Inside a package, you cannot reference host variables.

Creating the emp_admin Package

Using -- create the audit table to track changes

CREATE TABLE emp_audit(date_of_action DATE,user_id

VARCHAR2(20), package_name VARCHAR2(30));

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

80 | P a g e
CS120 COMPUTER PROGRAMMING LAB

CREATE OR REPLACE PACKAGE emp_admin AS TYPE EmpRecTyp IS

RECORD (emp_id NUMBER, sal NUMBER);

-- Declare externally visible types, cursor, exception

CURSOR desc_salary RETURN EmpRecTyp;

invalid_salary EXCEPTION;

-- Declare externally callable subprograms

FUNCTION hire_employee (last_name VARCHAR2, first_name

VARCHAR2, email VARCHAR2, phone_number VARCHAR2, job_id

VARCHAR2, salary NUMBER, commission_pct NUMBER, manager_id

NUMBER, department_id NUMBER) RETURN NUMBER;

PROCEDURE fire_employee (emp_id NUMBER);

-- overloaded subprogram

PROCEDURE fire_employee (emp_email VARCHAR2);

-- overloaded subprogram

PROCEDURE raise_salary(emp_id NUMBER, amount NUMBER);

FUNCTION nth_highest_salary (n NUMBER) RETURN EmpRecTyp;

END emp_admin; /

CREATE OR REPLACE PACKAGE BODY emp_admin AS number_hired

NUMBER;

-- visible only in this package

-- Fully define cursor specified in package

CURSOR desc_salary RETURN EmpRecTyp IS SELECT employee_id,

salary FROM employees ORDER BY salary DESC;

-- Fully define subprograms specified in package

FUNCTION hire_employee(last_name VARCHAR2, first_name

VARCHAR2, email VARCHAR2, phone_number VARCHAR2, job_id

VARCHAR2, salary NUMBER, commission_pct NUMBER, manager_id

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

81 | P a g e
CS120 COMPUTER PROGRAMMING LAB

NUMBER, department_id NUMBER) RETURN NUMBER IS new_emp_id

NUMBER;

BEGIN SELECT employees_seq.NEXTVAL INTO new_emp_id FROM

dual;

INSERT INTO employees VALUES (new_emp_id, last_name, first_name,

email, phone_number, SYSDATE, job_id, salary, commission_pct,

manager_id, department_id); number_hired := number_hired + 1;

DBMS_OUTPUT.PUT_LINE('The number of employees hired is ' ||

TO_CHAR(number_hired)); RETURN new_emp_id;

END hire_employee;

PROCEDURE fire_employee (emp_id NUMBER) IS BEGIN DELETE

FROM employees WHERE

employee_id = emp_id; END fire_employee;

PROCEDURE fire_employee (emp_email VARCHAR2)

IS BEGIN DELETE FROM employees WHERE email = emp_email;

END fire_employee;

-- Define local function, available only inside package

FUNCTION sal_ok (jobid VARCHAR2, sal NUMBER) RETURN

BOOLEAN IS min_sal NUMBER;

max_sal NUMBER; BEGIN SELECT MIN(salary), MAX(salary) INTO

min_sal, max_sal FROM employees WHERE job_id = jobid;

RETURN (sal >= min_sal) AND (sal <= max_sal);

END sal_ok;

PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER) IS sal

NUMBER(8,2);

jobid VARCHAR2(10); BEGIN SELECT job_id, salary INTO jobid, sal

FROM employees WHERE employee_id = emp_id;

IF sal_ok(jobid, sal + amount)

THEN UPDATE employees SET salary = salary + amount WHERE

employee_id = emp_id;

ELSE RAISE invalid_salary;

END IF;

EXCEPTION

-- exception-handling part starts here

WHEN invalid_salary THEN DBMS_OUTPUT.PUT_LINE('The salary is

out of the specified range.');

END raise_salary;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

82 | P a g e
CS120 COMPUTER PROGRAMMING LAB

FUNCTION nth_highest_salary (n NUMBER) RETURN EmpRecTyp IS

emp_rec EmpRecTyp; BEGIN OPEN desc_salary;

FOR i IN 1..n LOOP FETCH desc_salary INTO emp_rec;

END LOOP;

CLOSE desc_salary;

RETURN emp_rec;

END nth_highest_salary;

BEGIN

--initialization part starts here

INSERT INTO emp_audit VALUES (SYSDATE, USER, 'EMP_ADMIN');

number_hired := 0; END emp_admin; /

-- calling the package procedures

DECLARE new_emp_id NUMBER(6);

BEGIN new_emp_id := emp_admin.hire_employee('Belden', 'Enrique',

'EBELDEN', '555.111.2222', 'ST_CLERK', 2500, .1, 101, 110);

DBMS_OUTPUT.PUT_LINE('The new employee id is ' ||

TO_CHAR(new_emp_id));

EMP_ADMIN.raise_salary(new_emp_id, 100);

DBMS_OUTPUT.PUT_LINE('The 10th highest salary is '||

TO_CHAR(emp_admin.nth_highest_salary(10).sal) || ', belonging to

employee: ' ||

TO_CHAR(emp_admin.nth_highest_salary(10).emp_id));

emp_admin.fire_employee(new_emp_id);

-- you could also delete the newly added employee as follows: --

emp_admin.fire_employee('EBELDEN');

END; /

Expected Output
Created package mentioned above.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

83 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 12

CREATION OF DATABASE TRIGGERS AND CURSORS

Date…………

Q1 : Trigger for displaying grade of the student

Q2 : Program to indicate invalid condition using trigger

Q3 : Cursor program for electricity bill calculation

Theory

Cursor– We have seen how oracle executes an SQL statement. Oracle DBA

uses a work area for its internal processing. This work area is private to

SQL’s operation and is called a cursor.

The data that is stored in the cursor is called the Active Data set. The size of

the cursor in memory is the size required to hold the number of rows in the

Active Data Set.

Explicit Cursor- You can explicitly declare a cursor to process the rows

individually. A cursor declared by the user is called Explicit Cursor. For

Queries that return more than one row, You must declare a cursor explicitly.

The data that is stored in the cursor is called the Active Data set. The size of

the cursor in memory is the size required to hold the number of rows in the

Active

Why use an Explicit Cursor- Cursor can be used when the user wants to

process data one row at a time.

Explicit Cursor Management- The steps involved in declaring a cursor and

manipulating data in the active data set are:-

 Declare a cursor that specifies the SQL select statement that you want

to process.

 Open the Cursor.

 Fetch the data from the cursor one row at a time.

 Close the cursor.

Explicit Cursor Attributes- Oracle provides certain attributes/ cursor variables

to

control the execution of the cursor. Whenever any cursor(explicit or implicit)

is opened

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

84 | P a g e
CS120 COMPUTER PROGRAMMING LAB

and used Oracle creates a set of four system variables via which Oracle keeps

track of the

‘Current’ status of the cursor.

 declare a cursor that specifies the SQL select statement that you want to

process.

 Open the Cursor.

 Fetch the data from the cursor one row at a time.

 Close the cursor.

How to Declare the Cursor:-

The General Syntax to create any particular cursor is as follows:-

Cursor <Cursorname> is Sql Statement;

How to Open the Cursor:-

The General Syntax to Open any particular cursor is as follows:-

Open Cursorname;

How to apply DataBase Triggers:-

A trigger has three basic parts:-

1. A triggering event or statement.

2. A trigger restriction

3. A trigger action.

Types of Triggers:-

Using the various options , four types of triggers can be created:-

1. Before Statement Trigger:- Before executing the triggering statement, the

trigger action is executed.

2. Before Row Trigger:- Before modifying the each row affected by the

triggering statement and before appropriate integrity constraints, the trigger is

executed if the trigger restriction either evaluated to TRUE or was not

included.’

3. After Statement Trigger:- After executing the triggering statement and

applying any deferred integrity constraints, the trigger action is executed.

4. After row Trigger:- After modifying each row affected by the triggering

statement and possibly applying appropriate integrity constraints, the trigger

action is executed for the current row if the trigger restriction either evaluates

to TRUE or was not included.

Syntax For Creating Trigger:-

The syntax for Creating the Trigger is as follows:-

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

85 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Create or replace Trigger<Triggername> {Before,After} {Delete, Insert,

Update } On

<Tablename> For Each row when Condition

Declare

<Variable declarations>;

<Constant Declarations>;

Begin

<PL/SQL> Subprogram Body;

Exception

Exception Pl/SQL block;

End;

How to Delete a Trigger:-

The syntax for Deleting the Trigger is as follows:-

Drop Trigger <Triggername>;

Queries :

Q1 : Trigger for displaying grade of the student

SQL> create table stdn(rollno number(3),name varchar(2),m1 number(3),m2

number(3),m3 number(3),tot number(3),avrg number(3),result varchar(10));

Table created.

SQL> create or replace trigger t1 before insert on stdn

2 for each row

3 begin

4 :new.tot:=:new.m1+:new.m2+:new.m3;

5 :new.avrg:=:new.tot/3;

6 if(:new.m1>=50 and :new.m2>=50 and :new.m3>=50) then

7 :new.result:='pass';

8 else

9 :new.result:='Fail';

10 end if;

11 end;

12 /

Trigger created.

SQL> insert into stdn values(101,'SM',67,89,99,'','','');

1 row created.

SQL> select * from stdn;

ROLLNO NA M1 M2 M3 TOT AVRG Expected Outcome

--------- -- --------- --------- --------- --------- --------- ----------

101 SM 67 89 99 255 85 pass

Q2 : Program to indicate invalid condition using trigger

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

86 | P a g e
CS120 COMPUTER PROGRAMMING LAB

SQL> create table emp (name varchar(10),empno number(3),age number(3));

Table created.

SQL>

1 create or replace trigger t2 before insert on emp

2 for each row

3 when(new.age>100)

4 begin

5 RAISE_APPLICATION_ERROR(-20998,'INVALID ERROR');

6* end;

SQL> /

Trigger created.

SQL> insert into emp values('nithya',101,24);

1 row created.

SQL> insert into emp values('nithya',101,103);

insert into emp values('nithya',101,103)

*

ERROR at line 1:

ORA-20998: INVALID ERROR

ORA-06512: at "SCOTT.T2", line 2

ORA-04088: error during execution of trigger 'SCOTT.T2'

Q3 : Cursor program for electricity bill calculation

SQL> create table bill(name varchar2(10), address varchar2(20), city

varchar2(20), unit

number(10));

Table created.

SQL> insert into bill values('&name','&addess','&city','&unit');

Enter value for name: yuva

Enter value for addess: srivi

Enter value for city: srivilliputur

Enter value for unit: 100

old 1: insert into bill values('&name','&addess','&city','&unit')

new 1: insert into bill values('yuva','srivi','srivilliputur','100')

1 row created.

SQL> /

Enter value for name: nithya

Enter value for addess: Lakshmi nagar

Enter value for city: sivakasi

Enter value for unit: 200

old 1: insert into bill values('&name','&addess','&city','&unit')

new 1: insert into bill values('nithya','Lakshmi nagar','sivakasi','200')

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

87 | P a g e
CS120 COMPUTER PROGRAMMING LAB

1 row created.

SQL> /

Enter value for name: maya

Enter value for addess: housing board

Enter value for city: sivakasi

Enter value for unit: 300

old 1: insert into bill values('&name','&addess','&city','&unit')

new 1: insert into bill values('maya','housing board','sivakasi','300')

1 row created.

SQL> /

Enter value for name: jeeva

Enter value for addess: RRR nagar

Enter value for city: sivaganagai

Enter value for unit: 400

old 1: insert into bill values('&name','&addess','&city','&unit')

new 1: insert into bill values('jeeva','RRR nagar','sivaganagai','400')

1 row created.

SQL> select * from bill;

NAME ADDRESS CITY UNIT

---------- -------------------- -------------------- ---------

yuva srivi srivilliputur100

nithya Lakshmi nagar sivakasi 200

maya housing board sivakasi 300

jeeva RRR nagar sivaganagai400

SQL> declare

2 cursor c is select * from bill;

3 b bill %ROWTYPE;

4 begin

5 open c;

6 dbms_output.put_line('Name Address city Unit Amount');

7 loop

8 fetch c into b;

9 if(c % notfound) then

10 exit;

11 else

12 if(b.unit<=100) then

13 dbms_output.put_line(b.name||' '||b.address||'

'||b.city||'

'||b.unit||'

'||b.uni

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

88 | P a g e
CS120 COMPUTER PROGRAMMING LAB

t*1);

14 elsif(b.unit>100 and b.unit<=200) then

15 dbms_output.put_line(b.name||'

'||b.address||'

'||b.city||' '||b.unit||' '||b.

'||b.city||' '||b.unit||' '||b.

unit*2);

16 elsif(b.unit>200 and b.unit<=300) then

17 dbms_output.put_line(b.name||'

'||b.address||'

unit*3);

18 elsif(b.unit>300 and b.unit<=400) then

19 dbms_output.put_line(b.name||' '||b.address||' '||b.city||'

'||b.unit||' '||b.unit*

'||b.unit||' '||b.unit*

4);

20 else

21 dbms_output.put_line(b.name||' '||b.address||' '||b.city||'

5);

22 end if;

23 end if;

24 end loop;

25 close c;

26 end;

27 /

Name Addresscity UnitAmount

yuva srivi srivilliputur100100

nithyaLakshmi nagarsivakasi200400

mayahousing board sivakasi300900

jeeva RRR nagar sivaganagai4001600

PL/SQL procedure successfully completed.

Expected Output
Created database Triggers and Cursors as mentioned above.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

89 | P a g e
CS120 COMPUTER PROGRAMMING LAB

Exp.No

 13

MINI PROJECT

Date…………

Aim :Mini project (Application Development using Oracle/ MySQL using

Database Connectivity)

Expected Output

Any mini project related to the following areas :

a.Inventory Control System.

b. Material Requirement Processing.

c. Hospital Management System.

d. Railway Reservation System.

e. Personal Information System.

f. Web Based User Identification System.

g. Timetable Management System.

h. Hotel Management System.

Contents of PROJECT REPORT

1.Project Title

2.Certificate

3.Acknowledgement

4.System Overview

5.-- Current system

6.-- Objectives of the proposed system

7.Advantages of the Proposed system (over current)

8.E.R.Diagram

9.-- Entities

10.-- Relationships

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

90 | P a g e
CS120 COMPUTER PROGRAMMING LAB

11.--Mapping Constraints

12.Database Schema/Table Definition

13.-- Table Name

14.-- Field Name

15.-- Datatype

16.-- Field size

17.-- Constraint (e.g. autogenerated, primary key, foreign key)

18.-- Validation (e.g. not null, default value)

19.Implementation

20.Output

21.Future Enhancements of the system

22.Bibliography

